3,948 research outputs found

    Formalising the multidimensional nature of social networks

    Get PDF
    Individuals interact with conspecifics in a number of behavioural contexts or dimensions. Here, we formalise this by considering a social network between n individuals interacting in b behavioural dimensions as a nxnxb multidimensional object. In addition, we propose that the topology of this object is driven by individual needs to reduce uncertainty about the outcomes of interactions in one or more dimension. The proposal grounds social network dynamics and evolution in individual selection processes and allows us to define the uncertainty of the social network as the joint entropy of its constituent interaction networks. In support of these propositions we use simulations and natural 'knock-outs' in a free-ranging baboon troop to show (i) that such an object can display a small-world state and (ii) that, as predicted, changes in interactions after social perturbations lead to a more certain social network, in which the outcomes of interactions are easier for members to predict. This new formalisation of social networks provides a framework within which to predict network dynamics and evolution under the assumption that it is driven by individuals seeking to reduce the uncertainty of their social environment.Comment: 16 pages, 4 figure

    Fine Grained Robotics

    Get PDF
    Fine grained robotics is the idea of solving problems utilizing multitudes of very simple machines in place of one large complex entity. Organized in the proper way, simple machines and simple behaviors can lead to emergent solutions. Just as ants and termites perform useful work and build communal structures, gnat robots can solve problems in new ways. This notion of collective intelligence, married with technologies for mass-producing small robots very cheaply will blaze new avenues in all aspects of everyday life. Building gnat robots involves not only inventing the components from which to put together systems but also developing the technologies to produce the components. This paper analyzes prototype microrobotic systems, specifically calculating torque and power requirements for three locomotion alternatives (flying, walking and swimming) for small robots. With target specifications for motors for these systems, we then review technology options and bottlenecks and sort through the tree of possibilities to pick and appropriate path along which we plan to proceed.MIT Artificial Intelligence Laborator

    The ‘strength of weak ties’ among female baboons : fitness-related benefits of social bonds

    Get PDF
    Thanks to Cape Nature Conservation for permission to work at De Hoop, and to all the graduate students and field assistants who contributed to our long-term data-base. LB was supported by NSERC Canada Research Chair and Discovery Programs; SPH was supported by the NRF (South Africa) and NSERC Discovery Grants during the writing of this manuscript. We are grateful to one anonymous reviewer and, in particular, Lauren Brent for invaluable feedback on earlier drafts of our manuscript.Peer reviewedPostprin

    Fractal Weyl law behavior in an open, chaotic Hamiltonian system

    Get PDF
    We numerically show fractal Weyl law behavior in an open Hamiltonian system that is described by a smooth potential and which supports numerous above-barrier resonances. This behavior holds even relatively far away from the classical limit. The complex resonance wave functions are found to be localized on the fractal classical repeller.Comment: 4 pages, 3 figures. to appear in Phys Rev

    Tomorrow's Surgery: Micromotors and Microrobots

    Get PDF
    Surgical procedures have changed radically over the last few years due to the arrival of new technology. What will technology bring us in the future? This paper examines a few of the forces whose timing are causing new ideas to congeal from the fields of artificial intelligence, robotics, micromachining and smart materials. Intelligence systems for autonomous mobile robots can now enable simple insect level behaviors in small amounts of silicon. These software breakthroughs coupled with new techniques for microfabricating miniature sensors and actuators from both silicon and ferroelectric families of materials offer glimpses of the future where robots will be small, cheap and potentially useful to surgeons. In this paper we relate our recent efforts to fabricate piezoelectric micromotors in an effort to develop actuator technologies where brawn matches to the scale of the brain. We discuss our experiments with thin film ferroelectric motors 2mm in diameter and larger 8mm versions machined from bulk ceramic and sketch possible applications in the surgical field.MIT Artificial Intelligence Laborator

    Proof of principle : the adaptive geometry of social foragers

    Get PDF
    Acknowledgments We thank Cape Nature for permission to undertake the study. We thank Dr Matt Grove and two anonymous referees for comments and suggestions that improved the manuscript substantially. This research was funded by grants from the Leakey Foundation, National Science and Engineering Research Council, Canada to S.P.H. and L.B., and by the National Research Foundation, South Africa to S.P.H. His co-authors dedicate this paper to the memory of P.M.R.C. The authors declare no competing interests.Peer reviewedPostprin
    • …
    corecore